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Study of Equatorial Clutter
Using Observed and Simulated
Long Range Backscatter
ilonograms

1. INTRODUCTION

The United States Air Force (USAF) originally deployed two Over-The-Horizon Backscatter
(OTH) radars systems for surveillance: 1) East Coast Radar System (ECRS) and 2) West Coast
Radar System (WCRS) with operation centers at Bangor, ME, and at Mountain Home, ID,
respectively. Because of reduced USSR threat as well as present Department of Defense (DOD)
funding limitations, WCRS is in warm storage and only ECRS continues to be operated, routinely
collecting normal range (2000 nmi) backscatter ionograms (BSI) in the sectors and segments selected
for the radar operation.

For Frequency Modulated Carrier Wave (FMCW) pulsed radar, the wave repetition frequency
(WREF) results in the folding of long range signals into the primary-principal range of 2000 nmi
producing apparent clutter (unwanted signals) in addition to any clutter actually produced within the
primary range. This effect was anticipated and observed in the northern looking sectors and is well
known as auroral clutter. During late daytime operation while looking in the equatorward direction
the radar observed similar clutter. By collecting special long range (8000 nmi) backscatter ionograms,
Jurgen Buchau from Phillips Laboratory correctly identified this clutter to be of equatorial origin, and
showed that its diurnal variation was related to the local time, referred to the equatorial region (and
not the local time at the transmitter- receiver sites), starting from sunset and continuing through
sunrise. Later, the operation of the ECRS radar in Segments II and III (east and south looking paths
passing over the equator) routinely detected the equatorial clutter during these time periods. This led
to the proposal for the synoptic study of the equatorial clutter through a planned collection of long

range (8000 nmi) backscatter ionograms.
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In this report we show the signatures of the equatorial clutter sources, present the data base
for the study of the equatorial clutter, and discuss the spatial and temporal behavior of the equatorial
clutter. The simulation of these long range backscatter ionograms is done to explain the behavior of
equatorial clutter. For the synoptic study, ECRS data are used, and for description of clutter
signatures, data from both ECRS and WCRS are used.

2. BACKGROUND
Figure 1 shows the location and the coverage areas of both the ECRS and WCRS radars,

which typically operate in the frequency range of 5 to 28 MHz. For the ECRS, beams are shown to
the antipode point. For these radars, the maximum detection range is 2000 nmi (the ECRS system
has been modified to extend the range to 3000 nmi). The aim of the radar is to maintain a barrier
width of 500 nmi, typically starting at a distance of 1000 nmi from the transmitter. Each radar covers
an azimuth of 180°, as shown in Figure 1, with three 60° segments. For the ECRS, the segments are
numbered 1, 2, and 3 starting from north. For WCRS, the segments are also numbered 1, 2, and 3
in the clockwise direction, but starting from south. Due to the asymmetry of the auroral oval in a
geographic coordinate system, the ECRS is closer to the oval than the WCRS (note that WCRS is
further south than ECRS). Each 60° segment is subdivided into eight 7.5° beams. The boundaries
of these beams are also shown in Figure 1, along with the dip equator, £20° and +40° dip latitudes.
The equatorial anomaly region lies in a narrow region around =+ 20° latitude from the dip equator.
For the ECRS  the northern-most beam is 13000 km (7500 nmi) away from the equator whereas for
beam 2-8 this distance is 5900 km (3000 nmi). For WCRS the respective distances are 13500 and
5700 km.
For the radar, the unambiguous range of operation is given by the equation
UNAMBIGUOUS RANGE =0.5 ¢ /WRF ¢))
where c is the velocity of light and WRF(Hz) is the wave repetition frequency of the radar.
Figure 2 shows the unambiguous ranges for various WRFs for the ECRS beams 2-4, 2-6, and
2-8. At a WRF of 40 Hz the unambiguous range is about 2000 nmi and any clutter from longer
ranges is folded into this range. For a WRF of 10 Hz the unambiguous range is 8000 nmi. One of the

choices for the mitigation of the long range clutter is to operate the radar at a low WRF.
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Figure 3 shows the Amplitude Range Doppler (ARD) data (from WCRS) which are the
primary data used for target detection. The horizontal axis is slant range (delay time divided by 2c)
from the radar and the vertical axis is the strength of the received signal. For the upper block the
WRF of 40 Hz is used and for the lower block the WREF is 10 Hz; all other radar parameters are the
same. Note that for the lower block the unambiguous range (function of WRF) is 8000 nmi whereas
for the upper block it is 2000 nmi (see Figure 2). For the lower block the radar dynamic range is 80
dB. (-70 to -150). In the upper block the clutter covers a range of 32 dB (-108 to -140) and the radar
is left with the opérating range of only 38 dB (-70 to -108). The lower block indicates that there was
no clutter up to the range of 1513 nmi. From the upper block the conclusion is that clutter beyond
the slant range of 1513 nmi _has folded into the unambiguous range of 0-1513 nmi. In the example
shown here it was possible to identify the range of the clutter. If the clutter appeared on both WRFs
it would not be possible to identify the range of the clutter. In spite of this ambiguity it is still possible
to use the ARD data for studying the temporal dependence of the clutter.

From the ARD data, ground clutter to noise (C/N) ratios are routinely computed and
displayed for the coverage area of the operating beams of the radar. Figure 4A shows a sequence of
such clutter maps for the WCRS. In each map a pair of solid lines mark the sunset terminator. On
the display screen the color-shade of these lines tells the operator which side (left or right) is under
solar illumination and which side is in darkness (right or left). Note that in Figure 4A the terminator
for the first three sections refers to an altitude of 30 km, whereas for the fourth section for 0248 UT
the terminator is for an altitude of 300 km above the ground (the corresponding 30 km terminator
would be further left of that for 0220 UT in the lower left hand figure). Note also that the region on
the left hand side of this double line is in daytime and that on the right hand side the region is entering
darkness. The C/N contours for the region show that the ratio decreases (radar performance
progressively deteriorates) as the sunset transition progresses over the region. Conversely an
increasing C/N is seen in Figure 4B for the sunrise transition. In Figure 4B the region on the right
hand side is in daytime. In the two lower sections the double line is absent because it is on the left
hand side and outside of each of these frames. It is shown later that this regular behavior is associated

with the phenomenon of equatorial clutter.
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In Figures 5A-5C we see the use of long range backscatter ionograms (BSI to 8000 nmi) for
frequency management and identification of the clutter sources. The location of the clutter seen on
the BSI can be marked on a range-beam map as shown in Figure 1. The marked location can then be
associated with ionospheric features such as the northern and southern auroral oval, midlatitude
region, equatorial anomaly, etc. Figure SA shows a backscatter ionogram for beam 2-2, day 90-139
(year and the day number) at 0426 UT for the WCRS radar. The two traces starting in the lower left
hand corner show the ground backscatter for the first and second hop modes. The barrier marker
shows that for this beam the radar operation frequency was 14.6 MHz. The ground signatures at
7500 and 10,000 km when mapped on the range map of Figure 1, indicate that these features
originate in the southern anomaly and in southern midlatitudes respectively. Figure 5B presents a BSI
for beam 2-4, day 90-233 at 1406 UT showing features associated with the northern and southern
anomalies. Figure 5C for WCRS for beam 2-2, day 90-299 at 1426 UT shows features associated
with the southern anomaly, the southern midlatitudes and with the southern auroral oval. We use the

BSIs collected from ECRS for the study of the equatorial clutter.

3. DATABASE

For the synoptic equatorial clutter study, ECRS operators were requested to routinely collect
long range (8000 nmi) backscatter ionograms (BSI) on paper (hard copy) on a non-interference basis.
The data were routinely collected for beams 1-6, 1-8, 2-4, 2-8, and 3-5 (data collection started in
October 1991 with beams 1-8, 2-8, 3-5; beams 1-6 and 2-4 were added starting in July 1992). The
plan was to collect two BSIs per beam per hour. A list of the data collection is presented in Table 1.
The table presents the year and month in the first two columns. The next column presents the number
of days for which data are available for that month. The following 24 columns present the number
of backscatter ionograms available for each hour of that month for all the five beams listed above. The
last two columns present the total number of ionograms for the given month and the Zurich sunspot
number observed for the month. The line at the bottom presents the number of BSIs available for each
hour over the whole period. The table shows that data collection started in October 1991. The last
month of data used for the study is July 1993. During this period of 22 months, a total of 6254 BSIs

were collected on 376 days for the equatorial clutter study. The data coverage is good from 1400 to
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0200 UT. The data starts with a high sunspot number of 142 and ends with a low sunspot number
of 54, thus providing coverage of both high and low solar activity periods. For this analysis 1 August
92 isused as the line of demarcation between the high and low solar activity periods.

The data coverage by beams and months is presented in Table 2. Note that for the months of
August and September, data are available only for the year 1992. A look at the remaining data in the
table shows that although the data distribution with respect to months is not uniform, the overall
distribution with respect to the beams (last line at the bottom) is reasonably uniform. This allows us

to study clutter behavior in different regions covered by the respective beams.

4. ANALYSIS

The clutter data are found to be better organized in a dip latitude and local time system of
coordinates, and this system is used here. The local time periods of data coverage in this system of
coordinates is shown in Figure 6. In Figure 6 the left hand side curves show the start of observations
for various beams, and the numbers at the top of the curves show the start time in universal time
(UT). The right hand side curves show the end of observations. Each beam starts at the transmitter
and covers a range of 8000 nmi. Note that beam 3-5 looks at essentially the same local time, whereas
beam 1-6 looks through a time interval of 9 hours in LT. The observations cover a time period from
11 LT to 06 LT with a dip latitude range of +55° to -50°. This figure, in combination with data from
Table 1, shows a good data coverage for the sunset transition and a scanty coverage for the
sunrise transition.

Because the beams cover different local time intervals (seen in Figure 6) the data from Table
1 are sorted according to beams for studying the percent occurrence of clutter and its dependence on
universal time. The results are presented in Table 3. The first two columns in Table 3 list the number
and the look azimuth of the beam. The third column presents the total number of observations
available for that beam. This column shows that data collection is reasonably uniform over the beams.
The fourth column presents a percent occurrence of clutter. The column is divided into two parts.
The number in the first part of the column provides percent occurrence of clutter seen in that beam
from all the BSIs for that beam. The fourth column shows that the percent occurrence varies over the

beams. This variation could be misleading because the hourly coverage is not reasonably uniform,
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Table 3. Hourly Occurrence of Clutter in Various Beams

BEAM |AZM [NO OF % CLUTTER OCCURRENCE (>50%) IN
BSI |(OCCUR UT INTERVALS
18 19 20 21 22 23 00 01 02 03
3-5 170.25 (1285 K2 |72 50 163 |82 {93 {70 |71
2-8 132.75 (1448 |60 [74 53 {63 |78 |86 {91 {79 |76 |72 |70
2-4 102.75 11095 60 |70 54 174 |81 {85 |87 {91 |66 {43 |50
1-8 72.75 |1447 W4 63 65 |61 |56 |59 |75 |59
1-6 5775 1979 BS [54 61 |58 |53 |51 |50 |50

and consists of different look directions. Also, the number of observations in each time interval and
the time intervals (Figure 6) covered by the respective beams are different. This variation could be
misleading when the hourly coverage is not reasonably uniform. Furthermore, the conclusion based
on these observations would be worse if there are more hourly observations for the daytime hours
when the equatorial clutter is normally absent and few for the night time hours when the clutter is
normally present. To remove this ambiguity, the second part of the fourth column also presents the
average for the hours for which occurrence of clutter was greater than 50 percent. A look at the time
dependence (in the last column) shows that clutter is a regular phenomenon in beams 3-5, 2-8, and
2-4 starting at the sunset transition period and continues for at least 6 hours through the evening and
midnight hours (there are not enough data for late night and sunrise hours). In beams 1-8 and 1-6,
which look over a wide time interval, the clutter effect is certainly present but does not appear as
strong because of the spread of these data over a longer time interval. Overall the table shows that
equatorial clutter is a regular phenomenon starting at local sunset and continuing through the sunrise
hours. In beams 3-5, 2-8, and 2-4 at certain hours the clutter is greater than 90 percent showing that
equatorial clutter is a regular feature in these time intervals.

The observed clutter traces shown in Figures SA-5C for October 1991 - July 1992 (high solar
activity with average sun spot number =135) and for August 1992 - July 1993 (low solar activity
with average sun spot number=75) are all presented in dip latitude and local time coordinates in
Figures 7A and 7B respectively. In Figures SA-5C showing the backscatter observations, the ordinate

shows the slant range, which represents the time delay.
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Figures 7 and 8 show ground range plotted in dip latitude and UT coordinates. The slant
range is converted to ground range by the use of an average correction of 6 percent (discussed later).
In Figure 7A for high solar activity, the clutter lies symmetrically around the dip equator and covers
+40° range of dip latitudes. The clutter begins around 1400 LT and is seen up to 0400 LT. The
clutter is most frequent in -12° to -34° dip latitudes: the seat of the southern anomaly. The clutter
occurrence is lower in the region of £20° dip latitudes for 1700 to 2200 LT. In Figure 7B for low
solar activity, the distribution is similar to that of Figure 7A for high solar activity, but is shifted
northward by 10° and the window of reduced activity near the dip equator is from 1600-2000 LT.
In both these figures the clutter from the southern anomaly region is most frequent.

Data shown in Figures 7A and 7B are divided into seasons of high and low solar activity
periods to see if there are seasonal and solar activity based differences in the behavior of the clutter.
The data are grouped in four seasons 1) Fall (August 7 to November 6), 2) Winter (November 7 to
February 4), 3) Spring (February 5 to May 6), and 4) Summer (May 7 to August 6). These are
presented in Figures 8A-8H. In Figures 8A and 8B for the fall season, the appearance of additional
clutter occurring from the northern anomaly during the low solar activity period, compared to that
with high solar activity period, is an artifact of more and better time coverage of observational data
in the latter period. This can be confirmed by comparing the count and percent histograms at the
bottom of Figures 8A and 8B. Figures 8C to 8F present the data for winter and spring seasons. For
both of these seasons the location of the clutter moves 10° northward from -30° to -20° when
moving from high to low solar activity periods, and the window, the period of reduced occurrence
near the magnetic equator, lengthens by two hours. Also in Figures 8D and 8F the northward shift
of clutter steadily increases from 2000 to 0000 LT. Figures 8G and 8H show the clutter behavior for
summers of 1992 and of 1993. No significant change in the clutter behavior with respect to solar
activity is seen in the summer season.

To test the effect of solar activity on the range and frequency dependence of the clutter, data
for the corresponding seasons and corresponding hours are compared. Each group for a given season
is split into two parts to study the effect of high and low solar activity on the behavior of the
equatorial clutter. These data are presented in Tables 4A to 4E for the five beams. If the number of

hourly observations is less than six the corresponding data are deleted from these tables. A look at
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Table 4 A. Hourly Observations at ECRS for Beam 1-6 by Season and Level of Solar Activity

SEASONS
FALL WINTER SPRING SUMMER
SOLAR ACTIVITY
UT [HIGH ILOW II{IGH LOW . [HIGH [LOW [HIGH [LOW
13-14 10
14-15 8 , 13 8
15-16 10 19 12
16-17 11 9 19 12 18
17-18 17 13 30 9 18
18-19 20 33 35 13 20
19-20 13 31 31 9 18
20-21 16 27 27 17 17
21-22 19 24 30 12 13
22-23 12 31 25 13 14
23-00 6 7 11 14
00-01 6 7
01-02
02-03
03-04 7
04-05 10
05-06 16
06-07 12
07-08 16
08-09 14
09-10 14
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Table 4 B. Hourly Observations at ECRS for Beam 1-8 by Season and Level of Solar Activity

SEAS ONS
FALL WINTER SPRING SUMMER
SOLAR ACTIVITY
HIGH [LOW [HIGH [LOW [HIGH [LOW [HIGH [LOW
13-14 9 6
14-15 8 6 |11 6
15-16 9 8 8§ |19 13
16-17 10 14 7 |14 |19 14 17
17-18 16 12 11 17 |30 12 18
18-19 22 18 |29 16 |36 18 23
19-20 13 23 |29 |21 [30 19 21
20-21 16 25 |24 |25 |27 19 19
21-22 17 30 |24 16 |32 19 12
22-23 12 29 |31 11 |27 14 13
23-00 6 18 9 11 15
00-01 10 12 6
01-02 16
02-03 18
03-04 12 9
04-05 16 10
05-06 10 16
06-07 8 10
07-08 11 16
08-09 12 ‘ 12
09-10 15
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Table 4 C. Hourly Observations at ECRS for Beam 2-4 by Season and by Level of Solar Activity

SEASONS
FALL WINTER SPRING SUMMER
SOLAR ACTIVITY
UT HIGH | LOW HIGH | LOW | HIGH | LOW | HIGH | LOW
14-15 16
15-16 23 7 9
16-17 10 26 16 11
17-18 6 15 27 16 21
18-19 14 10 30 42 16 16
19-20 8 7 31 36 13 20
20-21 9 4 30 30 15 27
21-22 15 6 32 34 14 21
22-23 13 44 30 19 20
23-00 7 8 8 19
00-01 9 11
01-02 7
02-03
03-04 14
04-05 14
05-06 18
06-07 10
07-08 15
08-09 13
09-10 11
10-11 7
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Table 4 D. Hourly Observations at ECRS for Beam 2-8 by Season and by Level of Solar Activity

SEASONS
FALL WINTER SPRING SUMMER
SOLAR ACTIVITY
HIGH [LOW [HIGH LOW |HIGH [LOW [HIGH ‘LOW
14-15 8 17
15-16 12 19 9 10
16-17 10 8 16 |25 22 11
17-18 15 |13 10 |27 21 16
18-19 16 17 |28 16 |38 33 18
19-20 10 20 |29 17 |38 13 22
20-21 8 29 |20 27 |32 20 21
21-22 15 21 | 33 17 |30 22 15
22-23 10 24 |33 16 |27 23 18
23-00 9 24 |12 7 |7 19
00-01 8 18 13
01-02 16 9
02-03 17
03-04 13 12
04-05 7 12
05-06 15
06-07 14
07-08 14
08-09 14
09-10 14
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Table 4 E. Hourly Observations at ECRS for Beam 3-5 by Season and by Level of Solar Activity

SEASONS
FALL WINTER SPRING SUMMER
SOLAR ACTIVITY
UT HIGH | LOW |HIGH | LOW |HIGH| LOW_ | HIGH | LOW
12-13 11
13-14 10 6
14-15 15 7 9 7
15-16 18 14 8 16 12
16-17 21 15 9 15 24 15
17-18 30 21 11 18 25 22 6
18-19 35 34 28 15 24 15 7
19-20 8 22 40 21 23 28 12 3
20-21 9 21 38 24 23 21 14 6
21-22 11 16 35 25 19 18 17 6
22-23 18 10 21 14 13 11 10
23-00 13 12
00-01 14 9
01-02 11 6
02-03 7 7
03-04
04-05 6
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Tables 4A-4E shows: 1) reasonably good data are available for 1600 to 0000 UT, 2) good coverage
in beams 1-8, 2-4, 2-8, and 3-5 for comparing equatorial clutter for high and low solar activity
periods for spring, summer and winter seasons, 3) good coverage in beam 1-6 for low solar activity
only, for all seasons. For determining the difference of clutter behavior between high and low solar
activity periods only data from common time intervals are compared.

Before the corresponding data are compared, the distance along each beam to reach the
equatorial anomaly region consisting of the dip latitude range of £20° is computed and listed in Table
5. A typical skip distance is about 1200 nmi. A look at Table 5 shows that beam 2-8 is the best for
exploring the equatorial clutter, followed by beams 3-5 and 2-4. The northern beams 1-8 and 1-6
barely reach the northern tip (20° dip latitude) of the equatorial anomaly. Thus beams 3-5, 2-8, and
2-4 are able to provide data for the study of the equatorial clutter, whereas beams 1-8 and 1-6 will

provide more information on midlatitude clutter than on equatorial clutter.

Table 5. Distance(nmi) from the Transmitter to

the Specified Point for Various Beams

BEAM NO | DISTANCE (nmi) TO LAT.
20° 0° -20°

1-6 5200 6500 - 7700
1-8 4200 5600 7000
2-4 2400 3700 5000
2-8 1900 3000 4200
3-5 2000 3300 4300

Figure 9 presents slant range (from the radar) of clutter vs relative frequency of occurrence
for beam 3-5 for the fall season. The upper and lower sections are for high and low solar activity
periods respectively. Each section lists the beam number, the UT interval covered, number of
observations (BSIs) providing the data and the number of clutter events observed. Note that the
number of clutter events is larger than the number of BSIs, indicating that each BSI may have several

clutter events at different ranges (for example see Figures SA-5C). In Figure 9, a look at the
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Figure 9. Frequency of occurrence with slant range of clutter for fall season for high and low

solar activity periods for beam 3-5.

frequency of occurrence histograms shows that during a high solar activity period (uppef section)
the major clutter was in the range of 4600-5100 nmi range, whereas at low solar activity the
corresponding clutter covered a range of 4400-4900 nmi. Thus clutter at high solar activity was 200
nmi farther away from the radar than that at low solar activity. For the fall season there are not
enough data for other beams for such comparisons.

For the winter season these data are available for beams 1-8, 2-4, 2-8, and 3-5 (no data for
beam 1-6 were available for comparison). These are presented in Figure 10. For beam 1-8 at high
solar activity there are at least two clutter regions; one around 3200-3600 nmi range (midlatitude
clutter) and the other at 4800-5500 nmi range (northern anomaly), and possibly a third one at 4000-
4400 nmi range (midlatitude clutter). The clutter range for high solar activity at 4800-5500 nmi
shortens to 4600-5400 nmi at low solar activity. For beam 2-4 the clutter range of 4800-5200 nmi

at high solar activity spreads as the distribution moves down to 4400-5400 nmi. A similar change is
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10 D. Frequency of occurrence with slant range of clutter for winter season

5000
SLANT RANGE (NM)

for high and low solar activity periods for beam 3-5.
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seen for beam 2-8 with the clutter range moving from 4500-4900 nmi for a high solar activity
period to 4200-4900 nmi for a low solar activity period. Also, in beam 3-8 the clutter range of 4500-
5200 nmi in a high solar activity period moves to 4400-4800 nmi in a low solar activity period. Thus
in winter, a consistent shortening of the clutter range is seen from periods of higher to lower solar
activity.

In Figure 11 for the spring season the data for relative frequency of clutter occurrence vs
range are shown for beams 1-8, 2-8, and 3-5 (there are no data for beams 1-6 and 2-4 for
comparison). For beam 1-8 the distribution shows multiple peaks (midlatitude clutter and northern
anomaly) for occurrence. The figure shows that for beam 1-8 the range of 5000-5600 nmi at high
solar activity moves to 4600-5800 nmi during the low solar activity period. For beams 2-8 and 3-5,
ranges of 4400-5400 and 4400-5100 nmi at high solar activity move to lower values of 4100-5000

and 4000-4900 nmi respectively at low solar activity.

For the summer season the data are available for all the beams: 1-6, 1-8, 2-4, 2-8, and 3-5.
These are presented in Figure 12. For beam 1-6 the major peak has the ranges 5000-5600 and 5300-
5600 nmi at high and low solar activity periods respectively, showing no significant difference. For
beam 1-8 the major peak is very different, lying at a range of 6600-7000 nmi ( the southern anomaly
is significantly different than in other beams) for both high and low solar activity periods. Again, beam
2-4 shows a slightly opposite tendency, the clutter range being 4100-5000 nmi at high solar activity
and 4400-5300 nmi at low solar activity. Beam 2-8 shows no significant change in range, clutter
being at 3900-4800 nmi at high and 3800-4400 nmi at low solar activity. Similarly, beam 3-5 shows
no significant change in range, 4400-4800 nmi at high and 4200-4800 nmi at low solar activity. A few
points to be noted are :1) the movement of the clutter range with respect to high and low solar
periods is determined from the clutter distribution histograms; the ranges quoted are at 50 percent
level, 2) the peaks seen for beams 1-8 (6600-7000), 2-8 (4200-4800 nmi) are different than those seen
around 5000 nmi range, suggesting different sources of clutter for these three ranges. Thus in summer
no clear shortening of clutter range is seen with change in solar activity. In all other seasons the range
of clutter occurring around 5000 nmi during high solar activity is lowered by 200-400 nmi during
periods of low solar activity. Later it is shown that the lowering of clutter range seen is caused by
changes in the ray geometry for the corresponding periods. No systematic change in the frequency

range of the clutter with season was observed.
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To determine the effect of magnetic activity on the clutter occurrence, all the data were sorted
in two groups of very high and very low levels of magnetic activity. The groups consisted of the
quiet(Q) and disturbed (D) conditions listed for each month by the World Data center, Boulder,
Colorado, USA. The comparison of these two data sets for each beam (Table 2) for clutter range,
and frequency of occurrence did not show any significant differences. Therefore from this data set,
it is concluded that the observed clutter is independent of the level of magnetic activity, to be
expected for the equatorial region.

Typical diurnal behavior of clutter for beams 3-5, 2-8, and 1-8 for the winter season in 1991-
92 for a high solar activity period (sunspot number SSN=130) is presented in the following figures.
Figure 13 shows typical hourly BSIs for beam 3-5, looking at an azimuth of 170.25° T, essentially
along a constant local time. The first BSI at 1959 UT shows only ground returns from the first,
second, and third hop reflection modes. At 2056 UT additional reflections are seen at around the
slant range of 5000 nmi for the frequency bands of 10.0-15.4 and 24.6-28.0 MHz. A wide horizontal
strip at a slant range of 4800 nmi. running practically the entire frequency band is seen for next three
hours (until 2337 UT). At 0103 UT a wide horizontal strip is seen around 5000 nmi over a frequency
band of 11.8-19.0 MHz. At 0213 UT the frequency band covers a range of 19.0-24.4 MHz. No
typical data are available for 0300 UT. In the last hourly sample for 0413 UT reflections requiring
as many as five hops are seen. The figure shows that equatorial clutter starts around sunset and
continues up to midnight.

Figure 14 shows a time sequence of BSIs for beam 2-8 looking at azimuth of 132.75° T.
Because beam 2-8 looks more easterly than beam 3-5, the clutter starts an hour earlier (1900 UT vs
2000 UT). The equatorial clutter is strong and prominent in this beam as compared to that in the
former. The clutter is clearly seen at 0410 UT, the last typical BSI available for this beam. One of the
possible reasons for strong clutter in this beam is that the reflections for beam 2-8 are mostly over
the ocean surface in contrast to those for beam 3-5 over the land terrain.

Figure 15 shows the typical hourly BSIs for beam 1-8 with an azimuth of 72.75° T looking
practically due east of the transmitter site, covering a time zone 9 hours wide. Here the clutter occurs
at 2100 UT and continues all the way through 0700 UT, the last typical BSI available for this beam.
In contrast to beams 3-5 and 2-8, the clutter is fragmented and occurs at multiple locations. The

cause for such different behavior is not understood.
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Figure 14. Time sequence for typical behavior of equatorial clutter in beam 2-8 for the winter 1991-92, the period of high solar

activity (SSN=130) , -continued.




"panunuod- ¢ (0g1=NSS) Aanoe
Tejos Y3y jo pourad ay) ‘Te-1661 I9IUIM Ui J0f §-7 WEIq UL N[O [eLiojenbs Jo toraeyaq [eo1dA) 10§ 9ouanbas ouity, “p] an31g
.."..n...ua...n.!_m ULV ivida

oo v T
e .. ”n
. 5

8x

$ioox
waase

H_w

1
s ™ “ab 01N

48

WOLTNE DOMEL 44  HiW- -
4% w0 W
. '\ﬁﬂ- il xd‘lu
- M) IwWraLlY
. Lt e WOV AN
.1 nn,..‘.“!..i: Ut il B il . —= L * T
- b g TZUY A3y d A

*re M

Ty EHER "
: L SRR

40 1143 : - r
N v t

|

1N 0LE0

! N s o ...u..—”. FRRIENS . ,
s Ve WL IEY e o, hm B oL '
WWATIE o WS T !
. ) : r"
1
1
|
teoon

[T
VIR ) R A LT ATy BUL OK Enul b MW - -
e N WG I D o Smamtates 3111 & W0I1} vkl 6 30 Hl-—-.
=dvel wn) L. T30 P O'Y) uﬂ.»&mu! I o0% it oo 00 Dlwkee
an I3 Mo ed 43I¥
UK I et OO MI0NeS T IO (M W it

WAL Y
v L o) Kt e o *

PR

8 HO.103dS ¢ IN3INDIS 26-16 HILNIM SINVHOONOI HILLVYIOSHOVE




(0E1=NSS) Ananoe
1ejos ySiy jo pouad oyl ‘Z6-1661 JOIUIM dy) JOj §-] WeAq UL JONN[O [elojenba Jo totaryaq [eoid4} 103 douonbas swly, *G1 omgng
udidivu il

BWEIME T T T . (1" %- K V._—“;»:!illlilt'l.“.p.... Frig el
Al af 7 T T T T s A i M0 wwd 1885
(-4 5% . Tz LX) Rl .m!.n_ (X} * - T 4 82 Tz e o
R . n
e M n o N
Lo a1ns 3 g : : T - ] J ¢

H

in tvie

v’ M- .S.M_“_ 19)BSUVIY Hivay -
b+l e -0 W ﬁmﬂig.uﬂaﬂl wva oW e
e T T LT [ ars
e %0 27 ere-16 6 WITE ZON0E  V IHBOMN o
$AO00} LYW

SORIES M - L T IRt 1Y

o 18 e T T R TTTTR TIONROTe S o - W 10 W Ty R

- L) BRIV Tir v v-: (N ] L TR e 07 £ (X1} bl iy (N} .

32N €9 w0108 35 ¢
ST EM-TY B WUTE MIGNOS | GO
- WOK) BN IS

31va A%%
HO)SWR3E IV KO

8 HO1D03S L IN3IND3IS Z6-16 HILNIM SINVHOONOI H3LLVIOSHIOVE

49




BACKSCATTER IONOGRAMS WINTER 91-92 SEGMENT 1 SECTOR 8
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Figure 15. Time sequence for typical behavior of equatorial clutter in beam 1-8 for the winter 1991-92, the period of high solar

activity (SSN
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5. SYNTHETIC BACKSCATTER IONOGRAMS

Generating synthetic backscatter ionograms requires several steps. First one selects an
ionospheric model and determines the electron density distribution with respect to altitude along the
desired raypath (azimuth for which the backscatter ionogram is sought). Then one uses a raytrace
program to determine the range (distance from the transmitter) of the ground reflection points along
the selected path. For the given ionosphere this range is a function of the elevation angle and the
operating frequency. The signatures of the ground reflection points in terms of raypath distance, that
is, slant range (time delay between the transmitted and the received signals) versus frequency, form
the backscatter ionogram.

For the construction of the long range backscatter ionograms the Parameterized Ionospheric
Model' (PIM) developed by Anderson (Daniell et al., 1994) at Phillips Laboratory is used. For
raytracing, the program by Jones and Stephenson® (1975) is used. The PIM model is appropriate
for the equatorial clutter study as it includes features such as E x B drift and neutral winds that are
absent in other climatological models such as IONCAP?. Although the peak f;F, values are very
similar in PIM and IONCAP models, the altitude dependence of the electron density profiles is
modified in PIM as compared to that in IONCAP. As an example, Figure 16 shows two fF,
contours, one from IONCAP and the other from the PIM model for high solar activity level
(SSN=130) for a winter day for the ECRS looking at an azimuth 170° (beam 3-5). Note that the
general structure of the contours is very similar. The altitude of the maximum density is marked on
both the IONCAP on the PIM contour maps. Note that distance of the magnetic dip equator is
about 6600 km from the radar. At the equator the maximum in the PIM model is at an altitude of 510
km, 62 km above that of the IONCAP model. This difference reduces with increasing range from the
dip equator. Figure 17 shows that for the same winter day, with SSN=75, the PIM maximum of {.F,
is at 470 km, 98 km above that of IONCAP. In the PIM model the altitude difference for peak f;F,
between high and low sunspot activity is 40 km. Raytraces in these figures show that the radar wave
propagation is basically contained in the bottom portion of the ionosphere. Thus the raytrace
computations yield slightly longer ranges for the PIM model than those for the IONCAP model
because the entire layer is consistently higher in the PIM model than those in the IONCAP model.

Similarly for a given frequency ratio (f,,c.ug/f.F2), the higher altitudes for higher sunspot
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number/activity result in longer ranges than those for low sunspot number/activity. This is why the
equatorial clutter ranges are longer for the high sunspot period of 1991-1992 than those for low
sunspot activity of 1992-1993 (see Figures 9-12).

Figure 18 shows the time dependence of the altitude of peak of £ F, at the dip equator for
beams 3-5, 2-8, and 1-8 for high and low solar activity (SSN=130 and 75 respectively) for a winter
day. As the beams look from south to east (170°, 132°, 72°) the time of the maximum is from 0100,
2300, and 1900 UT respectively. The occurrence frequency listed in Table 3, and the time sequence
of clutter behavior seen in Figures 13-15, is consistent with this pattern. In Figure 18 the altitudes are
consistently higher during a high solar activity period than those for the low solar activity period.
Thus the clutter ranges would be consistently longer during a high solar activity period than those at
the low solar activity periods (see Figures 7 to 12).

Figure 19 presents raytraces for beam 2-8, for a winter day, for high solar activity (SSN=130)
for operating frequencies of 14, 16, and 18 MHz. The common features of these raytraces are 1) the
ionosphere closer to the radar within the first hop range provides the main control for the wave
propagation, 2) the wave propagation is basically restricted to the bottom portion of the F, layer, and
3) the equatorial dome geometry of the f.F, distribution favors a chordal mode of reflection. Figure
20, presenting raytraces for low solar activity (SSN=75) supports the same conclusions. For a direct
comparison of the change in range with solar activity, it is necessary to compare raytraces with equal
ratios of £,F,/f,persona inStead of equal operational frequencies.

From the raytraces shown in Figures 19 and 20, synthetic backscatter ionograms are generated
and are shown in Figure 21. The upper panel is for high solar activity and the lower panel is for low
solar activity. The highest frequency for the top BSI is 24 MHz, whereas for the bottom BSI, it
decreases to 19 MHz due to lower £F, at low solar activity (see f,F, contours in Figures 19 and 20).
Note the first three ground hop signatures at the bottom are followed by heavy, nearly horizontal
traces around 8000 km range. These horizontal traces indicate chordal mode due to reflection from
the southern side of the equatorial dome, and the horizontal trace at low solar activity has a shorter
range than the trace at high solar activity.

To demonstrate the difference in raypaths for beam 1-8, compared to beams 3-5 and 2-8, the

raytraces for 12 and 14 MHz are shown in Figure 22. For beam 1-8 the equatorial dome is far away,
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requiring more than 5 F-layer hops to reach the equatorial dome and generating chordal modes as
seen in beam 2-8 (in Figures 19 and 20). At these distances the beam power is well attenuated.
In the backscatter ionograms the vertical scale is the time delay, converted to slant range. On
the other hand, in the raytrace program we have both parameters: the ground range along the surface
of the earth and the actual path distance traversed by the beam. The difference between these two
parameters is a function of the operating frequency, the elevation angle, and the number of hops
travelled by the beam. All the raytraces of Figures 19-22 were used to determine the relationship of
ground range with the difference between slant and ground range shown in Figure 23. The figure
shows that a minimum correction from slant range to ground range is 3 percent, and the average
correction is 6 percent. For +20 levels of the population these corrections are 3.5 percent and 11.5
percent respectively. The figure is useful in estimating ground range from the observed slant ranges
in the backscatter ionograms. On the basis of these data, an average correction of 6 percent is used

in converting slant range to ground range in Figures 7 and 8.

6. CONCLUSIONS

This data base provides information on the behavior of the equatorial clutter over a local time
of 1100 to 0500, a period of about 16 hours. The equatorial clutter is expected to continue through
sunrise transition hours (demonstrated b§'/ a few cases) but the present data base does not cover the
late night period to provide conclusive evidence of this. The clutter occurrence covers a dip latitude
range of +40°. The distance from the radar to the equatorial clutter is longer at high solar activity
than at low solar activity. The equatorial clutter occurs less often near the dip equator between 17
and 21 LT. The equatorial clutter typically starts after sunset and continues past midnight.

The use of the raytrace technique shows that essentially the southern part of the equatorial
dome of the electron density distribution favors the chordal mode and produces horizontal trace
signatures showing clutter of equatorial origin. The wave propagation modes are similar in beams 3-5
and 2-8, which are south and south-east looking beams. For the east looking beam 1-8 the equatorial
dome is much further away, therefore the ray path is much longer and the equatorial clutter signatures

are much weaker that those seen in beams 3-5 and 2-8.
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